

World organisation for animal health Paris, 24-29 May 2009

77 SG/9

Original: English

IMPACT OF CLIMATE CHANGE AND ENVIRONMENTAL CHANGES ON EMERGING AND RE-EMERGING ANIMAL DISEASE AND ANIMAL PRODUCTION **Peter Black and Mike Nunn**

Australian Government Department of Agriculture, Fisheries and Forestry, GPO Box 858, Canberra, ACT 2601, Australia

Summary: Climate change and environmental change are a subset of the larger set of ecosystem changes that are promoting the emergence and re-emergence of animal diseases. The complexity of the interconnectedness between a wide range of factors influencing the emergence and re-emergence of animal diseases means that uncertainty will continue to be a feature of the future. Central Veterinary Authorities responsible for disease preparedness and response thus need to develop systems and strategies that are adaptable, resilient and capable of dealing with the unexpected. Authorities will need to focus on anticipating, preventing and responding to emerging and re-emerging animal diseases irrespective of their cause. The responses to a recent questionnaire distributed to OIE Members revealed that most animal health officials are concerned by the impact of climate change and environmental change on emerging and re-emerging animal disease. As expected, many Members identified a number of vector-borne diseases associated with climate change. Most Members indicated that the Central Veterinary Authority worked with other departments or agencies to address climate change and environmental change issues. Many OIE Members are not confident that veterinary institutions are effectively preparing professionals who are capable of understanding the impact of climate change and environmental change on emerging and reemerging animal diseases. The responses to the questionnaire also indicated an almost unanimous support for OIE to do more to assist Members to address the issues of the impacts of climate change and environmental change on emerging and re-emerging animal disease, including at the Regional and Sub-Regional Level. Most Members also indicated that they are keen to form their own ad hoc working or interest groups to address these issues.

1. Introduction

OIE has a mandate to improve animal health and welfare, and provides technical support to help Members to control and eradicate animal diseases, including diseases transmissible to humans. OIE also offers expertise to help the poorest countries to control animal diseases that cause livestock losses, present a risk to public health, and threaten other Members.

To date, there has not been an overview of the attitudes and likely response frameworks of OIE Members to the dual challenges of climate change and environmental change¹ on animal production and

For the purposes of this technical item the following definitions were applied:

Climate change: A change of climate attributed directly or indirectly to human activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable periods. Some aspects of climate variability, including increasing frequency and intensity of extreme weather events such as droughts and floods, are attributable to climate change.

Environmental change: A change in major physical and biological systems, either caused naturally or influenced by human activity. This includes changes in land use (e.g. deforestation, land clearing, conversion of wetlands, soil degradation), water quality and quantity (e.g. overuse and pollution of water supplies), biodiversity (e.g. loss of species), and air quality (e.g. air pollution) but explicitly excludes climate change.

health. A questionnaire was sent to Members to provide OIE the opportunity of better understanding the current attitudes of Members.

This paper outlines global issues associated with the impact of climate change and environmental changes on emerging and re-emerging diseases² of animals and animal production and summarises the responses from the questionnaire.

2. Context for this questionnaire

Many reports detail the current state of knowledge of ecosystem change, including both climate change and environmental change. For example, some of the key messages from the Millennium Ecosystem Assessment (MEA) report (18) of 2005 are that:

- To meet growing demands for food, fresh water, fibre, and energy, humans have made unprecedented changes to ecosystems in recent decades;
- These changes have helped to improve the lives of billions of people, but at the same time they have weakened nature's ability to deliver other key services; and
- The pressures on ecosystems will increase globally in coming decades unless human attitudes and actions change.

Since the release of the MEA report, the Stern Review on the economics of climate change (27) was delivered in the United Kingdom and the fourth assessment of the Intergovernmental Panel on Climate Change (IPCC) was released (4). Since 2005, a number of studies have reported that many of the anticipated consequences of climate change and environmental change seem to be occurring at a faster rate than expected (15). For example, the rate of melting of the Greenland Ice Sheet and the retreat of glaciers on a near global scale has been dramatic and surprising (5, 13, 28). In addition, there has been a recent detection of a surge in methane emissions associated with onset of soil freeze-in of permafrost-dominated tundra regions (16). How important these new findings are in relation to global climate is still being determined. Similarly, researchers completed a comprehensive analysis of nearly 30 000 species and physical phenomena and concluded that worldwide changes in these systems were attributed to human-induced climate change (24), but the likely flow-on effects of these changes are uncertain.

In terms of disease, most reports on climate change focus on human health. In 2006, FAO released a report, entitled *Livestock's Long Shadow* (26), that highlighted the role of the livestock sector in driving global environmental change, but this report did not focus on animal disease implications of global environmental change. In 2007 OIE produced a review volume on the expected impact of climate change on the epidemiology and control of animal disease (7). This review is a valuable addition to the nascent literature dealing with climate change and animal disease. A number of the papers in the review point out that many of the arguments relating to climate change are incomplete or simplified (22) and that the systems that are being investigated are complex and interconnected — clearly in the realm of 'complex systems' where establishing clear cause and effect relationships is very difficult. However, it is not necessary to establish clear causal links between either climate change or environmental change and animal disease emergence before designing and implementing robust strategies to deal with disease emergence.

3. Causality

In December 2007, a public workshop of the Institute of Medicine on microbial threats examined the anticipated direct and indirect effects of global climate change and extreme weather events on infectious diseases of humans, animals, and plants (23). This report highlighted that the 'web of causation' includes many factors that are closely interrelated or influenced (either directly or indirectly) by local, regional or global variations in climate. Climate change and environmental change are two of these interrelated factors. It

Impact of climate change and environmental changes on emerging and re emerging animal disease and animal production

For the purposes of this technical item the following definitions were applied:

An emerging infectious disease: A new infectious disease resulting from the evolution or change of an existing pathogen or parasite resulting in a change of host range, vector, pathogenicity or strain; or the occurrence of a previously unrecognised disease.

A re-emerging infectious disease: A known infectious disease that shifts or expands its geographical range, expands its host range, or significantly increases in incidence.

is thus not surprising that although the recent questionnaire explicitly defined climatic change and environmental change separately, the responses of many Members revealed that this distinction was quite problematic. In particular, the distinction was not very helpful for many Members when identifying emerging and re-emerging animal diseases believed to be directly associated with climate change or environmental change.

The questionnaire purposefully avoided issues surrounding causality. From a purely technical and scientific perspective, many scientists and commentators have reported that 'direct causal connections have yet to be established between climate change and infectious diseases' (23). Accurate predictions of the behaviour of infectious disease cannot be made simply on the basis of climate projections (or observed environmental changes) alone. However, there has been much discussion and debate about how much evidence is required to establish causal associations with sufficient confidence so that decision-makers can act. A number of authorities have argued that the analysis of complex relationships such as disease emergence and ecological change requires new approaches that complement traditional epidemiological methods (9, 17, 21). Such approaches include strong inference, causal diagrams, model selection and epidemiologic causal criteria. These approaches have been used to investigate large-scale drivers of disease emergence such as land-use change and climate change. Nonetheless, the question inevitably remains of how much information is required before a decision-maker should act. Decision-makers will obviously take into account other issues such a social, economic and political factors in addition to science (and causality arguments).

Although much recent discussion has focused on the relationship between climate change and emerging infectious disease, this paper will not debate whether any particular disease emergence or re-emergence is conclusively due specifically to climate change or environmental change. Instead, it assumes that at a broader level, ecosystem change—which includes climate change, environmental change and the associated interrelationships—is strongly associated with many emerging and re-emerging animal diseases. This position is consistent with the growing consensus that although climate change has attracted much more attention, ecosystem change is the overarching issue that needs to be addressed (11).

4. Complex systems

In 2004, King referred to the convergence model of the Institute of Medicine when classifying the factors affecting disease emergence and re-emergence (25). The list of factors included microbial adaption and change; host susceptibility; climate and weather; changing ecosystems, demographics and populations; economic development and land use; international trade and travel; technology and industry; reduction in animal and public health services or infrastructure; poverty and social inequity; war and dislocation; lack of political will; and intent to do harm (14). Again, many of the factors listed are interrelated and all are part of a complex system (29). The relationships can be simplified —as they have been in the convergence model—or further teased apart, as they have been in many other models (e.g. 6, 9, 29).

Models are designed to help understand the relationships between factors and to improve anticipation of and preparedness for future developments and events. However, an understanding of complex systems means that decision-makers need to be more adept at dealing with complexity and surprises, uncertainties, resilience, vulnerability and adaption. Many scientists and policy-makers are adjusting to working with incomplete information and dealing with 'uncertainty based' policy decisions.

In this complex system environment, there are often no 'right decisions' but simply more suitable decision pathways. More broadly, social attitudes, values and actions influence the context within which decision-makers develop policy and strategy. Accordingly, many researchers working with emerging and re-emerging animal diseases are now appreciating the key importance of considering social and ecological factors interactively rather than separately. To highlight this view, some scientists refer specifically to the complex system as the socio-ecological system or the ecosocial approach to health (20). This is adaptive management in which 'policies become hypotheses' and management actions are used to test the hypotheses and readjust strategy as more information becomes available (10). Central Veterinary Authorities will need to become more familiar with this approach when dealing with emerging or re-emerging animal diseases.

In order to keep these issues tractable, the simplified model in figure 1 will be used as a basis of discussion for the rest of this paper. The relative width of the arrows in figure 1 reflect the level of influence policy makers focused on emerging or re-emerging animal diseases are likely to exert within the overall system.

5. Main relationships

5.1. Relationship between climate change or environmental change and emerging or re-emerging animal disease

The major relationship that the questionnaire addressed was the association between climate change or environmental change and the emergence and re-emergence of animal diseases shown by the arrow labelled 1 in Figure 1. Most Members identified at least one emerging or re-emerging animal disease that was believed to be associated with climate change or environmental change. The most frequently mentioned diseases associated with climate change and environmental changes are listed in Table 1. The climate change responses are broadly consistent with other work that has highlighted the increase in the incidence of vector borne diseases in association with climate change. This increase is due to both the markedly altered vector population size and dynamics, and the increases in pathogen replication rates that are influenced directly by ambient temperatures during infection of the poikilothermic arthropod vector (23).

5.2. Relationships between ecosystem change and animal production

The FAO report entitled *Livestock's Long Shadow* concluded that the livestock sector is one of the most significant contributors to the most serious environmental problems at all scales, ranging from local to global (26), corresponding to arrow 2 in Figure 1. Indeed, this report argued that livestock production should be a major policy focus when dealing with problems of climate change, land degradation, water shortage, water pollution and loss of biodiversity.

The relationship marked by arrow 3 in Figure 1 refers to the changes that societies choose to make in their animal production systems in response to the anticipated and observed changes in climate and the environment. There is obviously a very wide range of possible responses that can be implemented at the level of industry, country, and region. However, the general trend towards intensification and industrialisation is expected to continue as societies seek to improve efficiency and reduce the land area required for livestock production. With reference to aquatic animal production, the same arguments about efficiency and reducing the area available for animal production will apply. Each Member will experience these trends to some degree, depending on its capacity to adapt to the challenges that lie ahead.

5.3. Relationships between animal production and emerging and re-emerging animal diseases

The relationship between animal production and emerging and re-emerging animal diseases was referred to in the questionnaire in the context of intensification of animal production as outlined in Section 5.2. Animal production systems have been responsible for many emerging and re-emerging diseases globally for hundreds of years. More recently, many integrated management programs for animal diseases have been developed in response to the changing disease profiles associated with evolving animal production systems. For example, treatment regimes were developed to decrease the incidence of mastitis, which was closely correlated with a range of animal management factors focused on increasing milk production. Similar examples in intensive animal production systems include the prevention and treatment of bovine respiratory disease in feedlots, salmonellosis in poultry production systems, porcine reproductive and respiratory syndrome in pig production systems, internal parasites in more intensively raised sheep and goat populations, and white spot syndrome in prawns. These were all emerging diseases at one time, but in most cases these diseases are now established within the relevant production systems. In developing countries, the diseases of interest may differ, but the principle still applies.

In general, intensifying production systems will increase the opportunity for emerging and re-emerging animal diseases (19) and management systems need to be developed to minimise their direct and indirect effects on production and profitability. This means that in response to actual or anticipated emerging and re-emerging animal diseases, animal production systems will be adjusted or redeveloped (this is the relationship labelled 5 in Figure 1). The evolution of relationships 4 and 5 is in fact a continuous interplay in which changes in one element of the complex system lead to changes in other parts of the system.

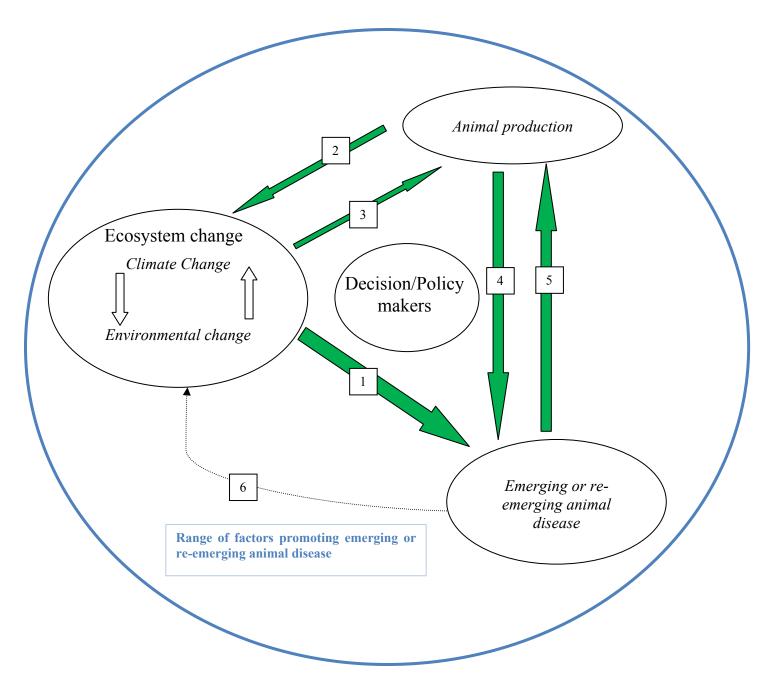


Figure 1. Main relationships between emerging and re-emerging animal diseases, climate change, environmental change and animal production.

5.4. Relationships between emerging and re-emerging animal diseases and ecosystem change

The policy decisions about emerging and re-emerging animal diseases that societies implement can indirectly influence ecosystem changes. For example, in countries attempting to eradicate a re-emerging disease such as bovine tuberculosis, control strategies could conceivably lead to changes in the density and distribution of other host species such as badgers, possums or buffaloes. These changes will have other flow-on effects within the ecosystem. This relationship is generally quite diffuse compared to the other relationships described and has therefore been marked as a dotted arrow in Figure 1.

6. Policy responses

The interactions between the variables described in Figure 1 take place across a vast array of scales of time and space. The impacts can thus be very variable. For example, there is recognition that the impacts of climate change will not be evenly distributed across the globe (27). In addition, the relationships are in a constant state of flux within a system that continues to evolve, making it difficult to forecast accurately the rate, distribution and scale of emergence and re-emergence of many animal diseases.

However, the emergence of some specific animal diseases such as arboviral diseases can be forecast with some confidence across a range of scales (i.e. country level, regionally and globally)(8, 23). By contrast, when and where the next disease such as, for example, Severe Acute Respiratory Syndrome (SARS) or Nipah virus will emerge cannot be forecast with any precision. At the global scale, scientists investigating trends in emerging infectious diseases have confirmed that emergence is driven largely by socio-economic, environmental and ecological factors, and that zoonotic emerging infectious disease represent an 'increasing and significant threat to global health'(12). In addition, in recent years more than 70% of zoonotic EIDs have originated from wildlife sources. Most worrying, is that the global allocation of surveillance resources is not based on risk, but strongly reflects the greater resources and capacity that exists in developed countries. This is also true of emerging or re-emerging animal diseases. Indeed, the veterinary profession has been asked whether the necessary surveillance systems are in place to deal with changing animal disease patterns (1).

The key policy response of Central Veterinary Authorities must be to improve surveillance and emergency response capacities to deal with this increasing rate of disease emergence and re-emergence irrespective of their cause. OIE has played a critical role in addressing this issue by developing the PVS (Performance of Veterinary Services) tool and encouraging its application across a wide range of Members (30). This tool, using OIE international standards of quality and evaluation 'promotes a culture of raising awareness and continual improvement'. It assists the central veterinary authority of Members to argue for improved access to financial and human resource support to improve veterinary services. This work contributes directly to the 'global public good' nature of the prevention and control of animal disease. The PVS tool specifically addresses surveillance and emergency animal disease preparedness capacity issues and has potential to be used to help address the current imbalance in surveillance capacity and disease risk at both the country and regional levels. Once a more solid veterinary services platform is established, it will be possible to embed more formal risk management approaches that will lead to the development of more robust strategies that can deal with unexpected emerging or re-emerging animal diseases.

More generally, there is need to improve understanding of complex systems and the increasing importance of longer-term thinking and planning by both developed and developing Members. This need for longer-term thinking and planning should mean that foresight or futures approaches will be more fully embraced by animal health policy-makers (3). Such approaches will help Central Veterinary Authorities build more resilience into the frameworks and systems designed to anticipate, prevent and control emerging or re-emerging animal diseases. As part of this increased understanding of the larger system and the timeframes involved, policy makers will need to continue to network with the other international organisations such as the United Nations Food and Agriculture Organisation (FAO), and the World Health Organisation (WHO), the Intergovernmental Panel on Climate Change, as well as with non-government organisations such as the Wildlife Conservation Society (WCS) and the Consortium for Conservation Medicine. No single organisation can address the issues of climate change and environmental change and the impacts on emerging or re-emerging animal diseases and animal production. Partnerships and collaboration will be absolutely essential to build a more coherent view of the future landscape and to devise a range of strategic options about what might need to be done and how to do it.

Fortunately, these partnerships and collaborations are already being developed at the global level within the evolving 'one world, one health' framework that has support from institutions such as OIE, FAO, WHO, the United Nations System for Influenza Coordination (UNSIC), UNICEF and the World Bank. There are also a host of institutions involved at the regional level and these will all play a critical role in the development and delivery of the 'one health approach' (2).

Some of the challenges of working across disciplines and sectors have been recognised in this framework. For Members, it is worth noting that there are high transaction costs for collaboration and that cultural and perception issues need to be specifically addressed. In addition, there are barriers within institutions and bureaucracies that can be quite difficult to overcome. However, policy responses must recognise that the decisions that are made will directly affect the system that promotes or hinders the rate of emergence and spread of emerging and re-emerging animal disease. The critical importance of real cooperation and collaboration at a range of levels should not be ignored.

Central Veterinary Authorities will naturally focus on the areas within their direct control such as surveillance and emergency response. This work could include more anticipatory activities so that surveillance and emergency response plans can be better targeted to cover some likely emerging and re-emerging animal disease threats while still being adaptable enough to deal with unexpected emerging and re-emerging animal diseases.

7. Questionnaire main findings

The questionnaire was sent to all 172 Member Countries and Territories. Responses were received from 107 Member Countries and Territories including one from the European Union, which represents 27 countries. However, seven of the 27 EU Members did respond individually and the following descriptive analysis includes each of these seven responses separately and has counted each of the other 20 EU Member responses separately (basically replicating the EU response 20 times). This was done so that each Member was treated equally. Thus 126 responses were recorded from 172 Member Countries and Territories, a response rate of 73%. The list of responding Member Countries and Territories is attached at Appendix A.

The level of concern of Central Veterinary Authorities in most Members about the likely impact on emerging and re-emerging animal diseases was either extreme or major for both climate change (71%) and environmental change (72%). Fifty eight percent of Members identified at least one emerging or re-emerging animal diseases that was believed to be directly associated with climate change and 30% identified at least one emerging or re-emerging animal diseases believed to be directly associated with environmental change. More Members (24%) were unsure about whether an emerging or re-emerging animal disease was directly associated with environmental change compared to climate change (6%). The most frequently mentioned diseases are summarised in table 1.

Table 1. List of diseases that were believed to be associated with climate change or environmental change.

Diseases mentioned more than twice believed to be associated with:	climate change	environmental change
Vector-borne		
Bluetongue virus	✓	✓
Rift Valley fever	✓	×
West Nile virus	✓	×
African horse sickness	✓	×
Lumpy skin disease	✓	×
Leishmaniasis	✓	✓
Epizootic haemorrhagic disease	✓	×
Tick-borne diseases	✓	✓
Parasitic diseases (excluding tick-borne)	✓	✓
Pasteurellosis	✓	×
Avian influenza	✓	✓
Anthrax	✓	✓
Blackleg	✓	×
Rabies	✓	✓
Tuberculosis	×	✓

Only a few Members specifically mentioned diseases of aquatic animals. *Vibrio tubiashi* and *Vibrio parahaemolyticus* in Pacific oysters and *Icthyophynos hoferi* in Pacific salmon and other fish species were mentioned in relation to climate change. Salmon infectious anaemia and crayfish plague were mentioned in relation to environmental change.

The dominance of responses mentioning vector-borne diseases associated with climate change is consistent with the predicted impacts of climate change on emerging diseases of both animal and humans (8, 23) as previously discussed.

Most Members indicated that the Central Veterinary Authority worked with other departments or agencies to address climate change (68%) and environmental change (71%) issues. In addition, 49% of Members had considered emerging and re-emerging animal disease issues related to more intensive animal production processes. With respect to research capacity to address the impact of climate change and environmental change on animal diseases, 22% of Members indicated that they had no real research capacity. Of the 78% of Members with research capacity, university and government department research were the two most common research capacity elements reported.

Interestingly, 39% of Members did not believe—and a further 39% were not sure—that veterinary institutions are effectively preparing professionals who are capable of understanding the impact of climate change and environmental change on emerging and re-emerging animal diseases. There is clearly a need to address this lack of capacity in terms of training graduates and post-graduates with appropriate skills to deal with future challenges.

Virtually all (98%) responses indicated that the OIE should do more to assist Members to address the issues of the impacts of climate change and environmental change on emerging and re-emerging animal diseases and all activities were supported by at least 30% of responding Members. The four most frequently nominated activities, in descending order, were:

- Designing a global strategy to assist Members to prevent/reduce effects of climate and environmental change on animal disease and production;
- Working with other international organisations that are directly involved in climate change and environmental change issues;
- Communicating with Members; and
- Monitoring and reviewing the effects of climate change on animal health.

The questionnaire also asked Members whether there was an opportunity for Regional or Sub-Regional OIE activities to assist in addressing these impacts of climate change and environmental change on emerging and re-emerging animal diseases. Again, most Members (87%) indicated that there were opportunities. Eleven percent was either unsure (8%) or did not believe (3%) that opportunities existed at the Regional or Sub-Regional level. Many activities were listed by Members and quite commonly these were the same as the OIE activities at a higher level listed in the questionnaire. For example, many Members proposed holding workshops in the region to better prepare for the impacts of climate and environmental change on emerging and re-emerging animal diseases and to improve communication networks to address these issues at the regional level. Actually designing and delivering activities at the Regional and Sub-Regional level is an appropriate response at the right scale when dealing with issues relating to climate change and environmental change. The impacts will be detected and experienced by Members and these will differ across the globe depending on regional influences.

Most Members (83%) indicated that they are keen to form *ad hoc* working or interest groups to address these issues. Indeed, almost 30% indicated a willingness to establish such groups immediately and another 63% would like to do so within one year.

8. Conclusions

The OIE will continue to play a critical role in assisting Members to obtain support to improve the ability of veterinary services to deal with emerging and re-emerging animal diseases. These challenges are global and require global leadership. In addition to this leadership role, OIE has the opportunity to establish Regional or Sub-Regional activities to assist in addressing these impacts of climate change and environmental change on emerging and re-emerging animal diseases. The impacts will vary from region to region, so that addressing emerging and re-emerging animal diseases at the regional level will result in more targeted and robust strategies. The responses to the questionnaire show that most Members support this approach.

Most Members expect that OIE will communicate with them about issues related to climate change, environmental change and emerging and re-emerging animal diseases. It is recommended that the OIE investigate mechanisms for effective communication about these issues.

Members indicated that OIE could monitor and review the effects of climate change on animal health. In this context, OIE could also assist Central Veterinary Authorities to develop decision-making frameworks that take into account new information about the evolving relationship between the ecosystem and emerging and re-emerging animal diseases. This approach allows the implementation of adaptive policy responses.

It is clear from the questionnaire that there is an opportunity for OIE to alert veterinary institutions to the need to prepare professionals who are capable of understanding the impact of climate change and environmental change on emerging and re-emerging animal diseases. This issue could be included in the forthcoming OIE conference that will discuss the quality of initial and continuing veterinary education curricula. In addition, OIE could highlight the importance of complex system concepts and developing adaptive policy responses.

Finally, OIE should continue to collaborate and network with other institutions and agencies that are addressing the broader policy issues linked to climate change, environmental change and animal production. OIE will continue to be the key player supporting the improvement of veterinary services in Member Countries and Territories as a major platform for dealing with emerging and re-emerging animal diseases. This role complements activities in many other agencies that also address issues related to emerging and re-emerging animal diseases and relationships with such agencies at the global and regional level need to be fostered. The evolving 'one world, one health' approach could be the vehicle for OIE to contribute—along with a range of other institutions—to a global strategy to reduce the effects of climate and environmental change on animal disease and production.

9. References

- 1. Alder M. (ed) (2008) Changing environment; new perspectives. Vet. Record, 163, 401.
- Anon. (2008) Contributing to One World, One Health, A Strategic Framework for Reducing Risks of Infectious Diseases at the Animal-Human-Ecosystems Interface, produced by FAO, OIE, WHO UN System Influenza Coordination UNICEF and WORLD BANK. Available at: http://www.fao.org/docrep/011/aj137e/aj137e00.htm (accessed on 22 January 2009).
- 3. Black P.F., Murray J.G. & Nunn M.J. (2008) Managing animal disease risk in Australia: the impact of climate change. *Rev. sci. tech. Off. Int. Epiz*, **27**(2), 563-580.
- 4. Climate Change (2007) The physical science basis: summary for policymakers. Geneva: Intergovernmental Panel on Climate Change secretariat. Available at http://www.ipcc.ch/
- 5. Das S.B., Jouglin I., Behn M.D., Howat I.M., King M.A., Lizarralde D. & Bhatia M.P. (2008) Fracture propagation to the base 0f the Greenland Ice sheet during supraglacial lake drainage. *Science*, **320**, 778-781.
- 6. Daszak P., Cunningham A.K. & Hyatt A.D. (2000) Emerging infectious diseases of wildlife: threats to biodiversity and human health. *Science*, **287**, 443-449.
- 7. de La Rocque S., Hendrickx G. & Morand S. (eds) (2008) Climate change: impact on the epidemiology and control of animal diseases. *Rev. sci. tech. Off. Int. Epiz.*, **27** (2), 327 pp.
- 8. de La Rocque S., Rioux J.A. & Slingenbergh J. (2008) Climate change: effects on animal disease systems and implications for surveillance and control. *Rev. sci. tech. Off. Int. Epiz.*, **27**, 339-354.

- 9. Eisenberg, J.N.S., Desai, M.A., Levy, K., Bates, S.J., Liang, S., Naumoff K., & Scott, J.C. (2007) Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research. *Environmental Health Perspectives*, **115** (8), 1216-1223.
- 10. Folke C., Hahn T., Olsson P. & Norberg J. (2005) Adaptive governance of social-ecological systems. *Annu. Rev. Env. Resour.*, **30**, 441-473.
- 11. Hanson C., Ranganathan J., Iceland C. & Finisdore J. (2008) The corporate ecosystems services review: guidelines for identifying business risks and opportunities arising from ecosystem change Version 1.0 available at http://pdf.wri.org/corporate ecosystem services review.pdf (accessed on 11 December 2008).
- 12. Jones K.E., Patel N., Levy M.A., Storeygard A., Balk D., Gittleman J.L., & Daszak P. (2008) Global trends in human emerging infectious diseases. *Nature*, **451**, 990-993
- 13. Joughlin I., Das S.B., King M.A., Smith B.E., Howat I.M. & Twila M. (2008) Seasonal speedup along the western flank of the Greenland ice sheet. *Science*, **320**, 781-783.
- 14. King L.J. (2004) *Emerging and Re-emergingZoonotic Diseases: challenges and opportunities*,'. Compendium of technical items presented to the International Committees or to Regional Commissions of the OIE, 21-29.
- 15. Mascarelli A.L. (2008) What we've learned in 2008. *Nature Reports: climate change*, January 2009. www.nature.com/reports/climatehange viewed 22 January 2009.
- 16. Mastepanov M., Sigsgaard C., Dlugokencky E.J., Houweling S., Ström L., Tamstorf M.P. & Christensen T.R. (2008) Large tundra methane burst during onset of freezing. *Nature*, **456**, 628-631.
- 17. Martens P. & McMichael A.J. (eds) (2002) *EnvironmentalChange, Climate and Health: issues and methods*. Cambridge University Press.
- 18. Millennium Ecosystem Assessment (2005) Living beyond our means Natural assets and human wellbeing: Key messages Available at http://www.millenniumassessment.org/en/index.aspx (accessed on 11 December 2008).
- 19. Nunn M. & Black P. (2006) Intensive animal production systems how intensive is intensive enough? Eleventh Symposium of the International Society for Veterinary Epidemiology and Economics, Cairns, Australia.
- 20. Parkes M.W., Bienen L., Breilh J., Hsu L-N., McDonald M., Patz J.A., Rosenthal J.P., Sahani M., Sleigh A., Waltner-Toews D. & Yassi A. (2005) All hands on deck: transdisciplinary approaches to emerging infectious disease. *EcoHealth*, **2**, 258-272.
- 21. Plowright R.K., Sokolow S. H., Gorman M. E., Daszak P. & Foley J.E. (2008) Causal inference in disease ecology: investigating ecological drivers of disease emergence. *Frontiers in Ecology and the Environment*, **6**, No. 8, 420-429.
- 22. Reiter P. (2008) Introduction to Climate change: impact on the epidemiology and control of animal diseases, *Rev. sci. tech. Off. Int. Epiz.*, **27**, 303-304.
- 23. Relman D.A., Hamburg M.A., Choffnes E.R., & Mack A. (Rapporteurs) (2008) Forum on Microbial Threats of the Institute of Medicine. *Global Climate Change and Extreme Weather Events: Understanding the Contributions to Infectious Disease Emergence*: Available at http://www.nap.edu/catalog/12435.html (accessed on 11 December 2008)
- 24. Rozenzweig C., Karoly D., Vicarelli M., Neofotis P., Qigang W., Casassa G., Menzel A., Root T.L., Estrella N., Sequin B., Tryjanowski P., Chunzenhen L., Rawlins S. & Imeson A. (2008) Attributing physical and biological impacts to anthropogenic climate change'. *Nature*, **453**, 353-357.
- 25. Smolinski M.S., Hamburg M.A. & Lederberg J. (eds) (2003) *Microbial Threats to Health: emergence, detection, and response.* Committee on Emerging Microbial Threats to Health in the 21st Century. National Academies Press, Washington, US. Also available at http://www.nap.edu.
- 26. Steinfeld H., Gerber P., Wassenaar T., Castel V., Rosales M. & de Haan C. (2006) *Livestock's long shadow: environmental issues and options*. Food and Agriculture Organization of the United Nations, Rome.
- 27. Stern N. (2006) Stern Review: The Economics of Climate Change. Available at: http://www.occ.gov.uk/activities/stern.htm (accessed on 11 December 2008).

- 28. Thompson L.G., Mosley-Thompson E., Brecher H., Davis M., León B., Les D., Ping-Nan L., Mashiotta T. & Mountain K. (2006) Abrupt tropical climate change: Past and present. *PNAS* **103** no. 28, 10536-10543. Available at http://www.pnas.org/content/103/28/10536.full.pdf+html (accessed on 22 January 2009).
- 29. Wilcox B.A. & Colwell R.R. (2005). Emerging and reemerging infectious diseases: biocomplexity as an interdisciplinary paradigm. *EcoHealth*, **2**, 244-257
- 30. World Organisation for Animal Health (2008) The new tool for the evaluation of performance of Veterinary Services (PVS Tool) using OIE international standards of quality and evaluation. Available at: http://www.oie.int/eng/OIE/organisation/en_vet_eval_tool.htm (accessed on 22 January 2009).

Impact of climate change and environmental changes on emerging and re emerging animal disease and animal production

Appendix A

A total of 126 countries responded to the questionnaire:

Albania, Algeria, Angola, Argentina, Armenia, Australia, Azerbaijan, Bangladesh, Belarus, Belgium, Belize, Benin, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Burkina Faso, Burundi, Canada, Central African Republic, Chile, People's republic of China, Columbia, Democratic republic of the Congo, Costa Rica, Côte D'Ivoire, Croatia, Cuba, Dominican Republic, El Salvador, Eritrea, Ethiopia, Gabon, Gambia, Georgia, Ghana, Greece, Guinea, Guinea Bissau, Haiti, Honduras, Iceland, India, Indonesia, Iran, Israel, Jamaica, Japan, Jordan, Kenya, Republic of Korea, Kuwait, Kyrgyzstan, Laos, Lesotho, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Mali, Mauritius, Moldavia, Montenegro, Morocco, Myanmar, Namibia, Nepal, New Caledonia, New Zealand, Niger, Norway, Oman, Paraguay, Peru, Philippines, Portugal, Qatar, Romania, Rwanda, Senegal, Serbia, Singapore, South Africa, Spain, Sri Lanka, Sudan, Swaziland, Switzerland, Chinese Taipei, Tanzania, Thailand, Togo, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, United Arab Emirates, United States of America, Uruguay, Uzbekistan, Vanuatu, Vietnam, Zambia and Zimbabwe.

European Union representing Austria, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, Latvia, Malta, Netherlands, Poland, Slovakia, Slovenia, Sweden, United Kingdom.

12

© World Organisation for Animal Health (OIE), 2009 This document has been prepared by specialists convened by the OIE. Pending adoption by the International Committee of the OIE, the views expressed herein can only be construed as those of these specialists. All OIE (World Organisation for Animal Health) publications are protected by international copyright law. Extracts may be copied, reproduced, translated, adapted or published in journals, documents, books, electronic media and any other medium destined for the public, for information, educational or commercial purposes, provided prior written permission has been granted by the OIE. The designations and denominations employed and the presentation of the material in this publication do not imply the expression

of any opinion whatsoever on the part of the OIE concerning the legal status of any country, territory, city or area or of its

The views expressed in signed articles are solely the responsibility of the authors. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by

authorities, or concerning the delimitation of its frontiers and boundaries.

the OIE in preference to others of a similar nature that are not mentioned.