Asia - Pacific Association of Agricultural Research Institutions

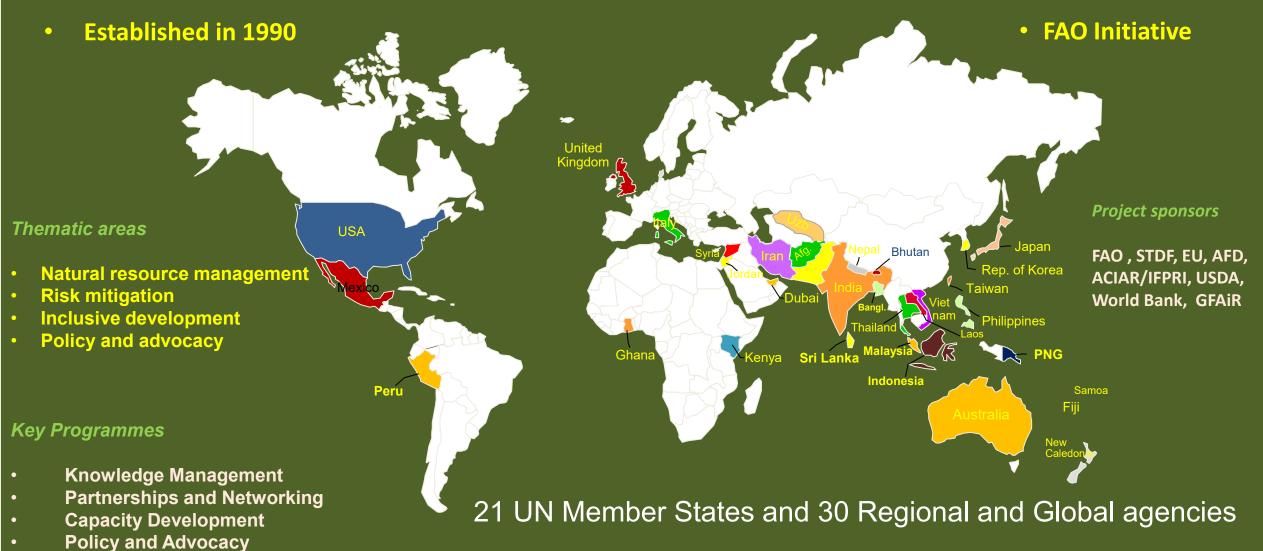
Innovation Shaping the Future of Agriculture and Safe Trade: Learnings from Pesticide Management in Asia and the Pacific

Perspectives from

'Asia Pesticides Residue Mitigation through the Promotion of Biopesticides'

(STDF Project)

Asia - Pacific Biopesticides Community of Practice (ABCoP)
Community of Practice for Public Private Partnership (CoP PPP)


APAARI Team

Asia-Pacific Association of Agricultural Research Institutions (APAARI), Bangkok, Thailand

APAARI

Strengthening Agri-food research and innovations for sustainable agricultural development in Asia and the Pacific Apolitical, membership based, multistakeholder platform

Biopesticides- A Recap

Biopesticides are naturally occurring substances (biochemical pesticides), microorganisms (microbial pesticides), or plant incorporated protectants (PIPs) that control pests by non toxic mechanisms and are typically target-specific

Biopesticides naturally fit into IPM systems because they:

- Are specific to target pests
- Preserve beneficial organisms
- Decompose quickly
- Help reduce chemical residues

Source: U.S. EPA, 2024

STDF/PG/634 - Asia Pesticides Residue Mitigation through the promotion of Biopesticides and Enhancement of Trade opportunities

Objective

• Increase awareness of how pesticide residue issues impact trade and develop methods for overcoming these trade barriers

Beneficiary countries

• Bangladesh, Cambodia, Indonesia, Lao PDR, Malaysia, Sri Lanka, Thailand, Vietnam

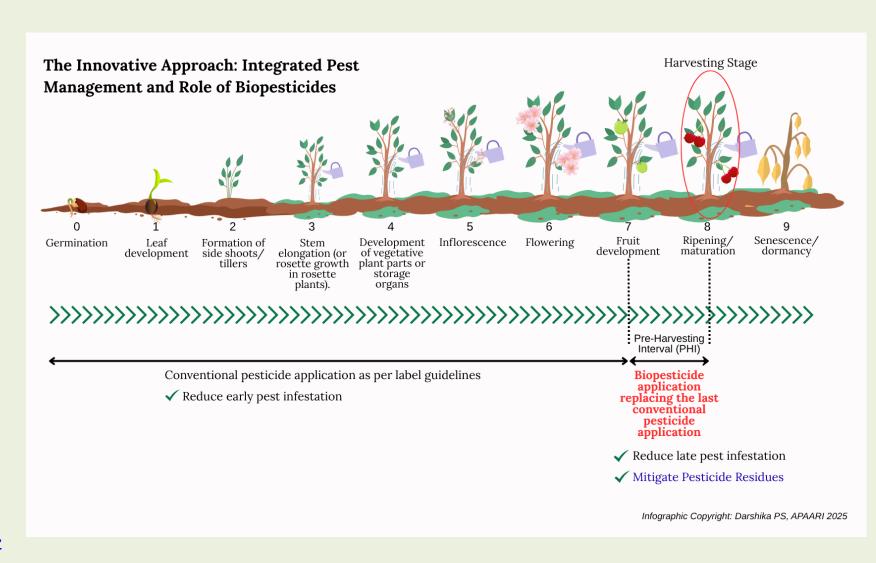
Funding Agency

Standards and Trade Development Facility (STDF)

Implementing Agencies

 Asia-Pacific Association of Agricultural Research Institutions (APAARI), AgAligned Global, United States Department of Agriculture (USDA)

Partners


• Singapore Food Agency, Asia Farmers Association for Sustainable Rural Development (AFA), CropLife Asia

Lesson 1 Innovative Approach - Integrated Pest Management (IPM)

Projects's innovative approach — substituting the final conventional spray with a biopesticide

has been validated as an effective residue mitigation strategy for horticultural crops while controlling pests during the preharvest interval (PHI)

Source: <u>APAARI, 2024</u> and <u>BBCH scale</u>

Lesson 2

Generation of MRL data through GFP, GLP and ToT

- A key lesson learned was that both technical and functional capacity development were essential for achieving the project's objectives.
 - ✓ Over **170 government officers** were equipped with enhanced technical capacities (knowledge) and functional capacities (soft skills) on residue mitigation studies, biopesticide production, and regulatory harmonization
 - ✓ Implemented across eight countries in South and Southeast Asia, successfully developed 18 standardized protocols for four major commercial crops—cabbage, sweet basil, dragon fruit, and chili pepper.
 - ✓ Proper use of biopesticides toward the end of the growing season **reduced pesticide residue** levels by up to 50%.
- All workshops and trainings were carried out following Good Field Practices (GFP) and Good Laboratory Practice (GLP) to enance knowledge gaps and practical skills.
- The <u>Policy Brief</u> was developed to highlight key policy recommendations.

Source: APAARI, 2024

Training of Trainers

- Adopting a Training of Trainers (ToT) approach proved highly effective in building capacity across participating countries. This was further strengthened through South-South Cooperation (SSC) and active knowledge exchange
 - ✓ Relevant government officials were trained by a Field Residue Research lead, Laboratory Residue Research Lead, Quality Assurance Specialist, and Biopesticide/Efficacy Research Lead (ToT)
 - ✓ Experts from Thailand visited and supported residue mitigation studies in Lao PDR, further strengthening South-South collaboration.

Source: APAARI, 2024

GLPTraining at Singapore food Agency(APAARI,2024)

Biopesticides Manufacturing Workshop/Training at Vietnam (APAARI,2024)

Lesson 3

ASEAN Countries:

- Indonesia, Thailand, Malaysia, and Vietnam have developed national biopesticide regulations aligned and harmonized with ASEAN guidelines through the Biopesticide Regulatory Workshop.
- Cambodia and Lao PDR were sensitized to establish national biopesticide regulations in alignment with the ASEAN guidelines

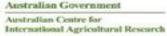
Non-ASEAN Countries:

- > Sri Lanka: Currently has no biopesticide regulations, and harmonization with ASEAN guidelines has not yet materialized.
- ➤ Bangladesh: Through APAARI—USDA Phytosanitary collaboration, revised biopesticide guidelines have been developed and are in the final stages of government approval.
- ➤ Pakistan: Under the USDA—CABI project, biopesticide regulations have been approved by the Government of Pakistan.

Lesson 4 Public Private Partnership for Biopesticides

- Asia Pacific Biopesticides Community of Practice (ABCoP) was initiated as a part of the Project's Sustainability Plan and later also a CoP PPP
- There are several example for Sustainable Pest Management Practices via Public Private Partnerships
 - ✓ The successful development and commercialization of Entomopathogenic Nematode (EPN) technology in India highlights its potential as a sustainable biopesticide. Supported by the National Bureau of Agricultural Insect Resources (NBAIR), the innovation has been licensed to multiple companies.
 - ✓ Biocontrol technology leaders (Ex: Bionema Group) focuses on unlocking the full potential of biopesticides by developing advanced technologies and transferring them to partners for commercialization.
 - ✓ CABI Bioprotection Portal, etc.

Key Conclusions



Sustainable horticultural production depends on the judicious, informed, and science-based us of both chemical and biological pesticides.
Replacing the final chemical application with a biopesticide can maintain pest control efficacy while reducing residues to within Codex MRLs, thereby ensuring food safety and compliance winternational standards.
The integration of Good Field Practices (GFP), Good Laboratory Practices (GLP), and Codex Alimentarius guidelines strengthens regulatory compliance, enhances consumer trust, and increases export potential.
Projects and virtual platforms play a vital role in capacity building, harmonizing protocols, and promoting cross-country collaboration for the adoption of sustainable pest management practices.

Thank you

Key Questions / Discussion Points

☐ Do we have sufficient R&D activity in countries/region on biopesticides (microbial, botanical, etc.) ? If not, what is needed?
☐ Are manufacturers supported with adequate regulatory clarity and incentives to produce biopesticides locally?
☐ Do scientists have the functional skills (regulatory science, product development, quality control, data for trade) to fully participate in and advance biopesticide development?
☐ How well do scientists / extension agents communicate with private sector, policymakers and farmers on biopesticide potential and safe use?
☐ What actions can be prioritized short-term vs long-term (e.g. regulatory reform, demonstration trials, public awareness)?