

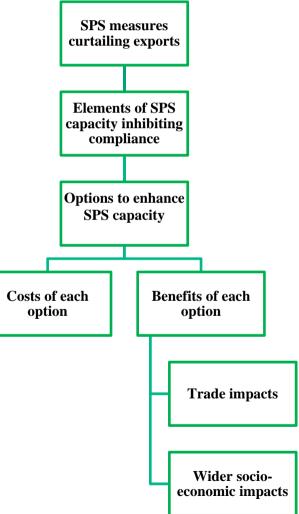
Overview of the use of economic analysis to set priorities for SPS capacity-building

Spencer Henson

Date: 16 August 2011

Structure

- Context
- Role and nature of economic analysis
- Approaches to economic analysis
- Decisions on the basis of multiple criteria
- Conclusions


Context

- Significant weaknesses in SPS capacity in developing countries
- Limited resources:
 - Domestic
 - Donors
- Evidence of inefficiencies in technical cooperation:
 - Supply-led
 - Lack of priority-setting
 - Overlaps versus gaps across donors
- Thrust towards enhanced aid effectiveness:
 - Information sharing
 - Coordination
 - Economic analysis
- Little evidence of systematic use of economic analysis in practice

of **G**UEL

Analysis of trade-related SPS capacitybuilding

UNIVERSITY \$GUELPH

Role of economic analysis

- 'Sift out' projects with net cost
- Identify priorities within capacity-building needs:
 - Weaknesses in SPS capacity
 - Products
- Identify efficient approaches to capacity development:
 - Alternative solutions
 - Points of intervention

Benefits of economic analysis

- Economic efficiency
- Objectivity
- Transparency & accountability
- Inclusiveness
- Appreciation of risk & uncertainty

€<u>GUELPH</u>

CHANGING LIVES IMPROVING LIFE

Challenges in undertaking economic analysis

- Costs and benefits can be wide-ranging and difficult to identify
- Costs and benefits can be difficult to measure
- Costs and benefits can be difficult to attribute
- Spill-over effects may be significant
- Data is almost always an issue:
 - Availability
 - Quality
- Changes *nature* of decision-making processes:
 - How decisions made
 - Cost and time intensity of decision-making processes
 - Influence & power structures
- Risk that open up a 'can or worms'

Economic analysis methods

- Cost-benefit analysis:
 - Which options yield net benefit?
 - Which option yields greatest net benefit?
- Cost-effectiveness analysis:
 - Which option most cost-effective way of achieving given objective?
- Multi-criteria decision analysis :
 - Which option best way of achieving outcome with multiple objectives?
 - What is impact of changing priorities across multiple objectives?

Cost-benefit analysis

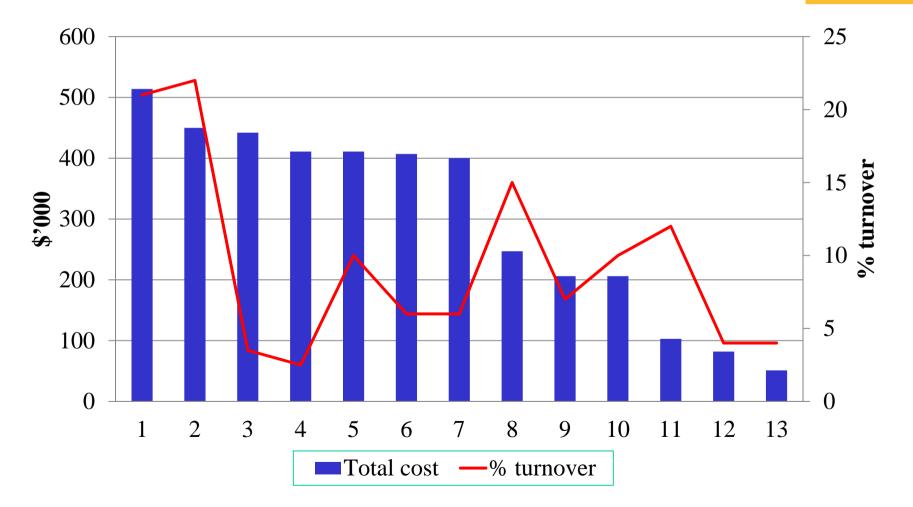
- Compute and compare flow of costs and benefits over time
- Costs and benefits expressed in monetary units
- Comparison to baseline usually the status quo
- Focus:
 - Narrow versus wider impacts
 - Partial versus general equilibrium effects
- Cost estimation:
 - Engineering approach
 - Econometric approach
 - Accounting approach
- Benefit estimation:
 - Quantification
 - Monetization

UNIVERSITY FGUELPH

Cost-benefit analysis

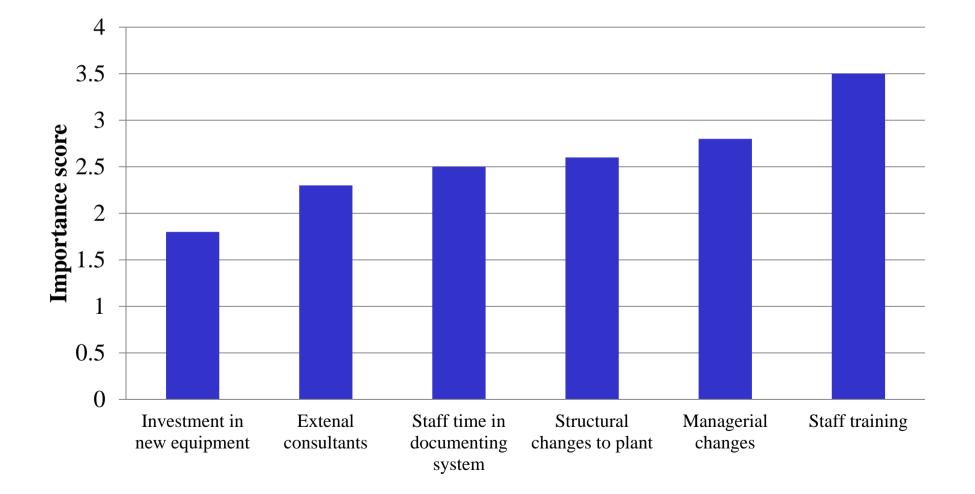
- Most widely applied approach to economic analysis of SPS controls
- Relatively few applications in developing countries, especially in area of food safety

- Applied to *ex ante* and *ex post* analysis
- Wide variation in approaches simple accounting frameworks to econometric models
- Often appreciable data problems
- Applications tend to be highly context-specific
- Some evidence of more routine use:
 - Project preparation/appraisal
 - Regulatory impact analysis



Costs of upgrading hygiene controls to EU standards in Keralan fish processing plants

CHANGING LIVES IMPROVING LIFE


NIVERSIT

б<u>ÜELPH</u>

Cost of implementing HACCP in Mexican meat processing sector

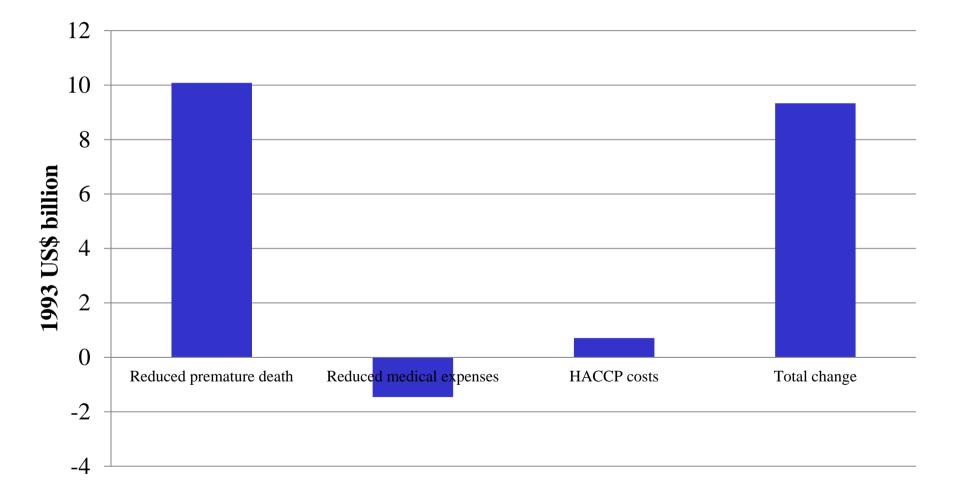
UNIVERSITY &GUELPH

Estimated costs and benefits of HACCP in the US meat and poultry sector

CHANGING LIVES IMPROVING LIFE

UNIVERSITY FG<u>UELPH</u>

Benefit Scenarios	Benefits		Costs	
	Low	High	Low	High
Low-range	1.9	9.3	2.3	2.3
Mid-range I	4.7	23.4	1.1	1.3
Mid-range II	26.2	95.4	1.1	1.3
High-range	47.2	171.8	1.1	1.3

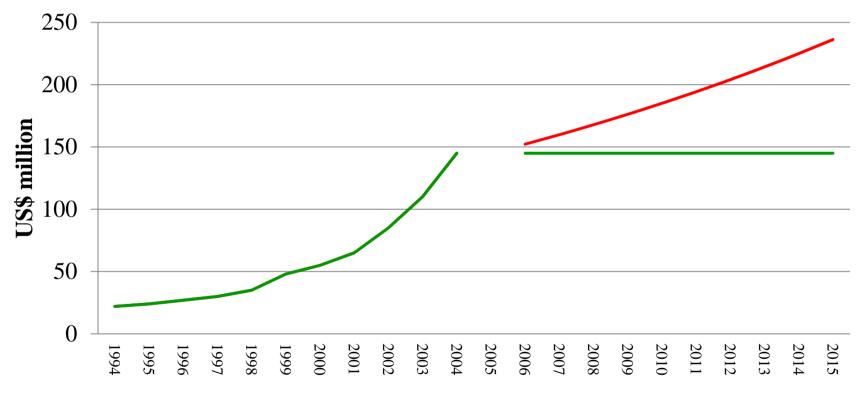


Sector-wide economic impacts of HACCP in US meat and poultry processing sector

CHANGING LIVES IMPROVING LIFE

INIVERSIT

`б<u>ÜELPH</u>



Predicted growth in Peruvian exports of fresh asparagus from enhanced hygiene controls

CHANGING LIVES IMPROVING LIFE

INIVERSIT

б<u>ÜELPH</u>

-Growth rate 5% -No growth from 2004

Impact of enhancement in food safety controls on Peruvian exports of asparagus

CHANGING LIVES IMPROVING LIFE

Costs/Benefits 2006-15	Minimum	Maximum	
Costs of food safety upgrades	\$14.14 million	\$42.43 million	
Expected export flows	\$1,958.7 million	\$2,461.9 million	
Returns per \$ investments in food safety capacity	46	174	

UNIVERSITY &GUELPH

Cost-effectiveness analysis

• Monetary costs of alternative options compared with (common) physical benefits

CHANGING LIVES

- Options ranked in terms of cost per physical benefit
- Option with greatest cost-effectiveness acts as baseline
- Will not determine if options produce a net benefit
- Most widely applied approach to assessment of medical interventions
- Limited applications to food safety and animal health controls
- Applications focus on alternative controls in very specific contexts
- Little or no application in developing countries

CHANGING LIVES

IMPROVING LIFE

Cost effectiveness of interventions at various stages of Dutch pork supply chain

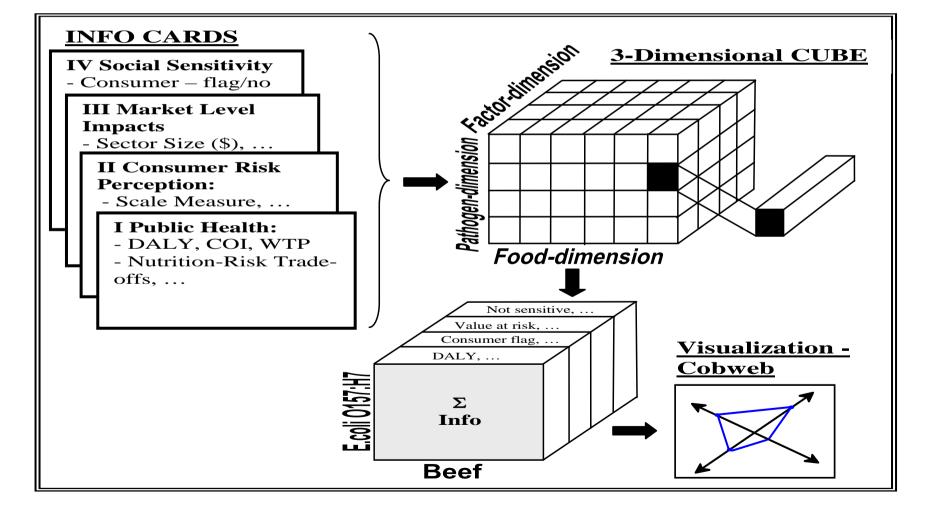
10 **Prevalence reduction per Euro (%)** 9 8 7 6 5 4 3 2 1 0 Finish Transport Lairage Slaughter Cost-effectiveness at that stage Cost-effectiveness within entire chain

UNIVERSITY \$GUELPH

Cost-utility ratios for food safety interventions in Dutch chicken supply chain

Intervention	Risk Reduction (%)	Reduction in Gastroenteritis ('000case/year)	Direct Cost (€million/year)	Cost-Utility Ratio (€'000 /DALY)
Improved farm hygiene (Substantial effect)	94	10	8-63	48-560
Phage therapy	63	6.7	4	35
Carcase decontamination - Dipping	77	9.2	5	28
Carcase decontamination - Dipping & spraying	92	11	26	190
Scheduled treatment - Dipping	77	9.2	5	28
Consumer information on kitchen hygiene	3	0.5	1	190

Multiple-Criteria decision analysis


- Choice between options in terms of multiple criteria
- Can be applied to relatively large numbers of options that vary in the associated costs and benefits
- Costs and benefits do not need to be measured in common monetary or non-monetary units
- Highly flexible in terms of data requirements
- Wide range of methods that differ in how distinguish between options
- Widely applied in natural resource management, engineering....
- Little application to SPS controls....but some recognition could be of significant utility

JNIVERSITY & <u>GUELPH</u>

Multi-factorial risk prioritisation framework for food-borne pathogens

UNIVERSITY FG<u>UELPH</u>

Prioritisation of six food-pathogen combinations in Canada

	Decision Criteria			
Pathogen-Food Combination	Public health Market impact Consumer acceptance Social sensitivity	Public health Market impact Consumer acceptance	Public health	
E. Coli O157 in beef	1	2	3	
<i>L. Monocytogenes</i> in ready-to-eat meats	2	4	4	
Campylobacter spp in chicken	3	1	1	
Salmonella spp in chicken	4	3	2	
E. Coli O157 in spinach	5	5	5	
Salmonella spp in spinach	6	6	6	

Driving principles

- What questions need answering?
 - Number/range of options
 - Range/diversity of impacts
- What is feasible?
 - Data
 - Time
 - Resources
 - Skills/experience
- What compromise is acceptable in terms of rigour and/or completeness?
- Is there buy-in at key levels of the decision process?

CHANGING LIVES IMPROVING LIFE

of **G**UEL

Analytical contexts

- *Ex post* analysis of existing capacity-building efforts
- Analysis of large-scale capacity interventions
- 'Demonstration' analysis of controls on SPS risks and/or enhancements in capacity
- Choices between multiple capacity-building options/design of actions plans for capacity enhancement

Conclusions

- Strong case for use of economic analysis:
 - Theoretical basis
 - Previous applications
- However, are potentially considerable challenges
- Need a flexible approach that can be applied to make broadbased comparisons of capacity-building options
- Multi-criteria decision analysis potentially a valuable tool
- Whichever approach is employed, needs to be operationalised in a broader structured framework

CHANGING LIVES IMPROVING LIFE

• Use for supporting versus making decisions